Home
Class 12
MATHS
[" 7.If "x^(2)+bx+c=0,x^(2)+cx+b=0(b!=c)...

[" 7.If "x^(2)+bx+c=0,x^(2)+cx+b=0(b!=c)],[" have a common root,then show that "],[b+c+1=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)+bx+c=0,x^(2)+cx+b=0(b!=c) have a common root then b+c=

If x^(2)+bx+c=0, x^(2)+cx+b=0 (b ne c) have a common root, then show that b+c+1=0

If x^(2)+bx+c=0, x^(2)+cx+b=0 (b ne c) have a common root, then show that b+c+1=0

IF x^2 +bx +c=0, x^2+cx +b=0 (b ne c) have a coomon root then b+c=

If the quadratic equations ax^(2)+2bx+c=0 and ax^(2)+2cx+b=0, (b ne c) have a common root, then show that a+4b+4c=0

If x^(2)+ax+bc=0 and x^(2)+bx+ca=0 have a common root,then a+b+c=1

If ax^(2) + 2bx + c = 0 and ax^(2) + 2cx + b = 0, b ne c have a common root, then (a + b + c)/( a) is equal to

If ax^(2)+bx+c=0 and bx^(2)+cx+a=0 have a common root, prove that a+b+c=0 or a=b=c .

If ax^(2)+bx+c=0andbx^(2)+cx+a=0 have a common root then the relation between a,b,c is

If the equation ax^2+2bx+c=0 and ax^2+2cx+b=0 b!=c have a common root ,then a/(b+c =