Home
Class 11
MATHS
" (5) "quad (sin(4A-2B)+sin(4B-2A))/(cos...

" (5) "quad (sin(4A-2B)+sin(4B-2A))/(cos(4A-2B)+cos(4B-2A))=tan(A+B)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (sin (4A - 2B) + sin (4B - 2A))/(cos (4A - 2B) + cos (4B - 2A)) = tan (A + B)

(sin (4.1-2 beta) + (sin (4B-2A)) / (cos (4A-2B) + cos (4B-2A) = tan (A + B))

(sin (4A - 2B) + sin (4B - 2 A))/( cos (4 A - 2 B) + cos (4B - 2 A))= tan (A +B)

Prove the following identities : (sin(A+B) - 2 sin A + sin (A-B))/(cos(A+B)-2cos A +cos (A-B))=tan A

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1 then prove that (i)sin^(2)A+sin^(2)B=2sin^(2)A sin^(2)B(ii)(cos^(4)B)/(cos^(2)A)+(sin^(4)B)/(sin^(2)A)=1

2sin^(2)B+4cos(A+B)sin A sin B+cos2(A+B)=

let a=cos A+cos b-cos(A+B) and b=4sin((A)/(2))sin((B)/(2))cos((A+B)/(2)) Then a-b is

If A+B-C=3pi, t h e n sin A+ sin B-sin C is equal to- a.4sin(A/2)sin(B/2)cos(C/2) b. -4sin(A/2)sin(B/2)cos(C/2) c. 4cos(A/2)cos(B/2)cos(C/2) d. -4cos(A/2)cos(B/2)cos(C/2)

If A+B-C=3pi,\ t h e n\ sin A+ sin B-sin C is equal to- a. 4sin(A/2)sin(B/2)cos(C/2) b. -4sin(A/2)sin(B/2)cos(C/2) c. \ 4cos(A/2)cos(B/2)cos(C/2) d. -4cos(A/2)cos(B/2)cos(C/2)

Prove the following tan^2A- tan^ 2B=(sin^2A-sin^2B)/(cos^2A*cos^2B) =(cos^2B-cos^2A) /(cos^2A*cos^2B)