Home
Class 12
MATHS
" 3."1+x+xy+x^(2)y...

" 3."1+x+xy+x^(2)y

Promotional Banner

Similar Questions

Explore conceptually related problems

Add : x^(3) - x^(2)y + 5xy^(2) + y^(3) , -x^(3) - 9xy^(2) + y^(3), 3x^(2)y + 9xy^(2)

The differential equation of all conics whose centre lies at origin, is given by (a) (3xy_(2)+x^(2)y_(3))(y-xy_(1))=3xy_(2)(y-xy_(1)-x^(2)y_(2)) (b) (3xy_(1)+x^(2)y_(2))(y_(1)-xy_(3))=3xy_(1)(y-xy_(2)-x^(2)y_(3)) ( c ) (3xy_(2)+x^(2)y_(3))(y_(1)-xy)=3xy_(1)(y-xy_(1)-x^(2)y_(2)) (d) None of these

The differential equation of all conics whose centre klies at origin, is given by (a) (3xy_(2)+x^(2)y_(3))(y-xy_(1))=3xy_(2)(y-xy_(1)-x^(2)y_(2)) (b) (3xy_(1)+x^(2)y_(2))(y_(1)-xy_(3))=3xy_(1)(y-xy_(2)-x^(2)y_(3)) ( c ) (3xy_(2)+x^(2)y_(3))(y_(1)-xy)=3xy_(1)(y-xy_(1)-x^(2)y_(2)) (d) None of these

The differential equation of all conics whose centre k lies at origin, is given by (a) (3xy_(2)+x^(2)y_(3))(y-xy_(1))=3xy_(2)(y-xy_(1)-x^(2)y_(2)) (b) (3xy_(1)+x^(2)y_(2))(y_(1)-xy_(3))=3xy_(1)(y-xy_(2)-x^(2)y_(3)) ( c ) (3xy_(2)+x^(2)y_(3))(y_(1)-xy)=3xy_(1)(y-xy_(1)-x^(2)y_(2)) (d) None of these

The differential equation of all conics whose centre klies at origin, is given by (a) (3xy_(2)+x^(2)y_(3))(y-xy_(1))=3xy_(2)(y-xy_(1)-x^(2)y_(2)) (b) (3xy_(1)+x^(2)y_(2))(y_(1)-xy_(3))=3xy_(1)(y-xy_(2)-x^(2)y_(3)) ( c ) (3xy_(2)+x^(2)y_(3))(y_(1)-xy)=3xy_(1)(y-xy_(1)-x^(2)y_(2)) (d) None of these

If (x + y) ^(2) = xy +1 and x ^(3) -y ^(3) = 1, what is the value of (x-y) ?

The factors of x^(3)-x^(2)y-xy^(2)+y^(3) are (a (x+y)(x^(2)-xy+y^(2))(b)(x+y)(x^(2)+xy+y^(2))(c)(x+y)^(2)(x-y)(d)(x-y)^(2)(x+y)

Verify : (i) x^(3)+y^(3)=(x+y)(x^(2)-xy+y^(2)) " " (ii) x^(3)-y^(3)=(x-y)(x^(2)+xy+y^(2))