Home
Class 9
MATHS
(log(2)4tat)/((a+b+c)/(a)-(1)/(b)+b^(-1)...

(log_(2)4tat)/((a+b+c)/(a)-(1)/(b)+b^(-1)+c^(-1)a^(-1))=abc

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (a+b+c)/(a^(-1)b^(-1)+b^(-1)c^(-1)+c^(-1)a^(-1))=abc

((1)/(a)-(1)/(b+c))/((1)/(a)+(1)/(b+c))(1+(b^(2)+c^(2)-a^(2))/(2bc)):(a-b-c)/(abc)

If (log_(2)a)/(2)=(log_(3)b)/(3)=(log_(4)c)/(4) and a^((1)/(2))b^((1)/(3))c^((1)/(4))=24 then

Prove that 1/(a(a-b)(a-c))+1/(b(b-c)(b-a))+1/(c(c-a)(c-b))=1/(abc)

The area of triangle formed by the vertices (a, 1/a), (b, 1/b), (c, 1/c) is (a) |((a+b)(b+c)(c+a))/(2abc)| (b) |((a-b)(b-c)(c-a))/(2abc)| (c) |((a-(1)/(a))(b-(1)/(b))(c-(1)/(c )))/(2)| (d) |((a-1)(b-1)(c-1))/(2abc)|

Show that (1)/(log_(a)abc)+(1)/(log_(b)abc) + (1)/(log_(c) abc) = 1 .

Prove that : (1)/( log _(a) ^(abc) )+(1)/(log_(b)^(abc) ) + (1)/( log _c^(abc)) =1

log_(2)(1+(1)/(a))+log_(2)(1+(1)/(b))+log_(2)(1+(1)/(c))=2 where a,b,c are three different positive integers, then that log_(e)(a+b+c)=log_(e)a+log_(e)b+log_(e)c or prove that a=1,b=2,c=3.

The area of triangle formed by the vertices (a,(1)/(a)),(b,(1)/(b)) and (c,(1)/(c)) iS (a+b+c)/(abc) |((a-b)(b-c)(c-a))/(2abc)| (abc)/(a+b+c) (1)/(2)(a^(2)+b^(2)+c^(2))