Home
Class 11
MATHS
If f(x)=[2x]sin3pix then prove that f'(k...

If `f(x)=[2x]sin3pix` then prove that `f'(k^(+))=6kpi(-1)^(k)`, (where [.] denotes the greatest integer function and `k in N).`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

If f(x)=[2x], where [.] denotes the greatest integer function,then

f(x)=sin^(-1)[2x^(2)-3] , where [*] denotes the greatest integer function. Find the domain of f(x).

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If f(x)=(x-[x])/(1-[x]+x), where [.] denotes the greatest integer function,then f(x)in:

The period of the function f(x)=sin(x+3-[x+3]) where [] denotes the greatest integer function

f(x)=sin^(-1)[log_(2)((x^(2))/(2))] where [.] denotes the greatest integer function.