Home
Class 11
MATHS
If x^2+y^2=1,t h e n (a)y y^('')-2(y^...

If `x^2+y^2=1,t h e n` (a)`y y^('')-2(y^(prime))^2+1=0` (b)`yy^('')+(y^(prime))^2+1=0` (c)`y y^('')+(y^(prime))^(-2)-1=0` (d)`y y^('')+2(y^(prime))^2+1=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a function is represented parametrically be the equations x=(1+(log)_e t)/(t^2); y=(3+2(log)_e t)/t , then which of the following statements are true? (a) y^('')(x-2x y^(prime))=y (b) y y^(prime)=2x(y^(prime))^2+1 (c) x y^(prime)=2y(y^(prime))^2+2 (d) y^('')(y-4x y^(prime))=(y^(prime))^2

Let y=f(x) be a parabola, having its axis parallel to the y-axis, which is touched by the line y=x at x=1. Then, (a) 2f(0)=1-f^(prime)(0) (b) f(0)+f^(prime)(0)+f^(0)=1 (c) f^(prime)(1)=1 (d) f^(prime)(0)=f^(prime)(1)

The condition that one of the straight lines given by the equation a x^2+2h x y+b y^2=0 may coincide with one of those given by the equation a^(prime)x^2+2h^(prime)x y+b^(prime)y^2=0 is (a b^(prime)-a^(prime)b)^2=4(h a^(prime)-h^(prime)a)(b h^(prime)-b^(prime)h) (a b^(prime)-a^(prime)b)^2=(h a^(prime)-h^(prime)a)(b h^(prime)-b^(prime)h) (h a^(prime)-h^(prime)a)^2=4(a b^(prime)-a^(prime)b)(b h^(prime)-b^(prime)h) (b h^(prime)-b^(prime)h)^2=4(a b^(prime)-a^(prime)b)(h a^(prime)-h^(prime)a)

If x=varphi(t), y=psi(t),t h e n(d^(2y))/(dx^2) is (a) (varphi^(prime)psi^('')-psi'varphi' ')/((varphi^(prime))^2) (b) (varphi^(prime)psi^('')-psi'varphi' ')/((varphi^(prime))^3) (c) varphi^('')/psi^('') (d) psi^('')/varphi^('')

The differential equation of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=C is a. y^(primeprime)/y^(prime)+y^(prime)/y-1/x=0 b. y^(primeprime)/y^(prime)+y^(prime)/y+1/x=0 c. y^(primeprime)/y^(prime)-y^(prime)/y-1/x=0 d. none of these

For each of the following initial value problems verify that the accompanying functions is a solution. (i) x(dy)/(dx)=1, y(1)=0 => y=logx (ii) (dy)/(dx)=y , y(0)=1 => y=e^x (iii) (d^2y)/(dx^2)+y=0, y(0)=0, y^(prime)(0)=1 => y=sinx (iv) (d^2y)/(dx^2)-(dy)/(dx)=0, y(0)=2, y^(prime)(0)=1 => y=e^x+1 (v) (dy)/(dx)+y=2, y(0)=3 => y=e^(-x)+2

Consider the family of all circles whose centers lie on the straight line y=x . If this family of circles is represented by the differential equation P y^(primeprime)+Q y^(prime)+1=0, where P ,Q are functions of x , y and y^(prime)(h e r ey^(prime)=(dy)/(dx),y^=(d^2y)/(dx^2)), then which of the following statements is (are) true? (a)P=y+x (b)P=y-x (c)P+Q=1-x+y+y^(prime)+(y^(prime))^2 (d)P-Q=x+y-y^(prime)-(y^(prime))^2

xe^(-y)dx+ydy=0 A) 2x^(2)+(y-1)e^(y)=c B) (x^(2))/(2)+(y-1)e^(y)=c C) (y^(2))/(2)+(x-1)e^(x)=c D) 2y^(2)+(x-1)e^(x)=0

If [1 4 2 0]=[x y^2z0],y<0t h e nx-y+z= 5 (b) 2 (c) 1 (d) -3

The circles x^(2)+y^(2)-2x-4y+1=0 and x^(2)+y^(2)+4y-1 =0