Home
Class 12
MATHS
sin x+sin^(2)x=1rArr cos^(2)x+cos^(4)x=...

sin x+sin^(2)x=1rArr cos^(2)x+cos^(4)x=

Promotional Banner

Similar Questions

Explore conceptually related problems

sinx + sin^(2) x = 1 rArr cos^(2) x + cos^(4) x=

sin x + sin^(2) x + sin^(3) x = 1 rArr cos^(6) x - 4cos^(4) x + cos^(2) x =

Evaluate: int(1)/(sin^(4)x+sin^(2)x cos^(2)x+cos^(4)x)dx

If sin x+sin^(2)=1, then cos^(8)x+2cos^(6)x+cos^(4)x=

The value of (cos^(4)x+cos^(2)x sin^(2) x + sin^(2)x)/(cos^(2)x+ sin^(2) x cos^(2) x + sin^(4)x) is ____________

(lim)_(x rarr)(sin^(4)x-sin^(2)x+1)/(cos^(4)x-cos^(2)x+1) is equal to (a) 0( b) 1 (c) (1)/(3)(d)(1)/(2)

int (1) / (sin ^ (4) x + sin ^ (2) x cos ^ (2) x + cos ^ (4) x) dx

If 2sin x-cos2x=1 ,then (cos^(2)x+cos^(4)x+4)/(2) is equal to

If sin x+sin^(2)x+sin^(3)x=1 then cos^(6)x-4cos^(4)x+8 cos^(2)x=

The values of x in (0, pi) satisfying the equation. |{:(1+"sin"^(2)x, "sin"^(2)x, "sin"^(2)x), ("cos"^(2)x, 1+"cos"^(2)x, "cos"^(2)x), (4"sin" 2x, 4"sin"2x, 1+4"sin" 2x):}| = 0 , are