Home
Class 11
MATHS
log(0.5)(log(6)(x^(2)+x)/(x+4))<0...

log_(0.5)(log_(6)(x^(2)+x)/(x+4))<0

Promotional Banner

Similar Questions

Explore conceptually related problems

If log _( 0.6) (log _(6) ((x ^(2) +x)/(x +4))) lt 0, then complete set of value of 'x' is:

If log _( 0.6) (log _(6) ((x ^(2) +x)/(x +4))) lt 0, then complete set of value of 'x' is:

If log_(0.5)log_(5)(x^(2)-4)>log_(0.5)1, then' x' lies in the interval

If log_(x){log_(4)(log_(x)(5x^(2)+4x^(3)))}=0, then

If "log"_(x){"log"_(4)("log"_(x)(5x^(2) +4x^(3)))} =0 , then

If "log"_(x){"log"_(4)("log"_(x)(5x^(2) +4x^(3)))} =0 , then

Value of x, satisfying (6)/(5)a^(log_(a)(x))*(log_(10)(a)*log_(a)(5))-3^(log_(10)((x)/(10)))=9^(log_(100)(x)+log_(4)(2)) is :

(6)/(5)a^((log_(a)x)(log_(10)a)(log_(a)5))-3^(log_(10)((x)/(10)))=9^(log_(100)x+log_(4)2) (where a gt 0, a ne 1) , then log_(3)x=alpha +beta, alpha is integer, beta in [0, 1) , then alpha=

(6)/(5)a^((log_(a)x)(log_(10)a)(log_(a)5))-3^(log_(10)((x)/(10)))=9^(log_(100)x+log_(4)2)("where "a gt 0, a ne 1) , then log_(3)x=alpha +beta, alpha is integer, beta in [0, 1) , then alpha=

(6)/(5)a^((log_(a)x)(log_(10)a)(log_(a)5))-3^(log_(10)((x)/(10)))=9^(log_(100)x+log_(4)2)("where "a gt 0, a ne 1) , then log_(3)x=alpha +beta, alpha is integer, beta in [0, 1) , then alpha=