Home
Class 9
MATHS
(log(5)6)/(log(5)2+1)=...

(log_(5)6)/(log_(5)2+1)=

Promotional Banner

Similar Questions

Explore conceptually related problems

Which of the following reduces to an integer? (1) (log32)/(log4) (2) (log_(5)128)/(log_(5)16-log_(5)4) (3) (2log6)/(log12+log3) (4) log_(4)8

Lt_(x to 1)(log_(5)5x)^(log_(x)5)=

Find the value of (log_(3)4)(log_(4)5)(log_(5)6)(log_(6)7)(log_(7)8)(log_(8)9)

(1)/(log_(5)5)+(1)/(log_(5)5)

Consider the inequalities log_(5)(x-3)+(1)/(2)log_(5)3<(1)/(2)log_(5)(2x^(2)-6x+7) and log_(3)x+log_(sqrt(3))x+log_((1)/(3))x<6

Find the value of (i) (log_(10)5)(log_(10)20)+(log_(10)2)^(2) (ii) root3(5^((1)/(log_(7)5))+(1)/((-log_(10)0.1))) (iii) log_(0.75)log_(2)sqrtsqrt((1)/(0.125)) (iv)5^(log_(sqrt(5))2)+9^(log_(3)7)-8^(log_(2)5) (v)((1)/(49))^(1+log_(7)2)+5^(-log_(1//5)7) (vi) 7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)

(1)/(2)log_(5)36+2log_(5)7-(1)/(2)log_(5)12

let E=log_(2)(log_(2)3)+log_(2)(log_(3)4)+log_(2)(log_(4)5)+log_(2)(log_(5)6)+log_(2)(log_(6)7)+log_(2)(log_(7)8 then 8^(E) is