Home
Class 12
MATHS
(v)(a)/(ax-1)+(b)/(bx-1)=a+b...

(v)(a)/(ax-1)+(b)/(bx-1)=a+b

Promotional Banner

Similar Questions

Explore conceptually related problems

(a)/(ax-1)+(b)/(bx-1)=a+b,x!=(1)/(a),(1)/(b)

Solve for x:(a)/(ax-1)+(b)/(bx-1)=a+b;x!=(1)/(a),(1)/(b)

Solve : (a)/(ax-1)+(b)/(bx-1)=a+b , where a+b ne 0, ab ne 0 .

Solve each of the following quadratic equations: (a)/((ax-1))+(b)/((bx-1))=(a+b),xne(1)/(a),(1)/(b)

Solve: a/(ax-1)+b/(bx-1)=a+b (x!=1/a,1/b) .

Solve for x: a/(ax-1)+b/(bx-1)=a+b; x!= 1/a, 1/b

If u=inte^(ax)cos bx dx and v=int e^(ax)sinbx dx , show that, "tan"^(-1)(v)/(u)+"tan"^(-1)(b)/(a)=bx .

Differentiate the following functions w.r.t.x : tan^-1((a+bx)/(b-ax)) , (bx)/a> -1

(d)/(dx)[tan^(-1)((ax-b)/(bx+a))]=

If u=inte^(ax)sin " bx dx" and v=int^(e^(ax))cos " bx dx" ,then tan^(-1)((u)/(v))+tan^(-1)((b)/(a)) equals