Home
Class 12
MATHS
lim(n rarr oo)(1^(2)+2^(2)+3^(2)+..........

lim_(n rarr oo)(1^(2)+2^(2)+3^(2)+........+n^(2))/(n^(3))=

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: lim_(n rarr oo)(1^(2)+2^(2)+......+n^(2))/(n^(3))

Evaluate: lim_(n rarr oo)(1^(2)+2^(2)+......+n^(2))/(n^(3))

lim_(n rarr oo)2^(1/n)

Let a = lim_(n rarr oo) (1+2+3+.....+n)/(n^(2))= , b = lim_(n rarr oo) (1^(2)+2^(2)+.....+n^(2))/(n^(3))= then

lim_(n rarr oo)(2^(3n))/(3^(2n))=

lim_(n rarr oo) (1^(2)+2^(2)+....+n^(2))/(2n^(3)+3n^(2)+4n+1 ) =

Evaluate: lim_(n rarr oo) ((1^(2)+2^(2)+3^(2)+...+n^(2)))/((1+3+5+7+...+"n terms")) .

lim_ (n rarr oo) (1 ^ (2) + 2 ^ (2) ... + n ^ (2)) / (n ^ (3))

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

The value of lim_(n rarr oo) (1 + 2^(4) + 3^(4) +…...+n^(4))/(n^(5)) - lim_(n rarr oo) (1 + 2^(3) + 3^(3) +…...+n^(3))/(n^(5)) is :