Home
Class 12
MATHS
int(x-y)^(y)(log3)/(x-y)=(log5)/(y-z)=(l...

int_(x-y)^(y)(log3)/(x-y)=(log5)/(y-z)=(log7)/(x-x)+hen3^(n+y)5y+z=z+x

Promotional Banner

Similar Questions

Explore conceptually related problems

If ("log"3)/(x-y) = ("log"5)/(y-z) = ("log" 7)/(z-x), " then " 3^(x+y) 5^(y+z) 7^(z+x) =

If ("log"3)/(x-y) = ("log"5)/(y-z) = ("log" 7)/(z-x), " then " 3^(x+y) 5^(y+z) 7^(z+x) =

(log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y), thena ^(x)b^(y)c^(z) is

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y) then prove that x^(y)+z^(z)+xx^(y+z)+y^(x+x)+z^(x+y)>=3

If (log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y) the value of a^(y+z)*b^(z+x)*c^(x+y) is

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y), then prove that: x^(x)y^(y)z^(z)=1

If (log x)/(y-z) = (log y)/(z-x) = (log z)/(x-y) , then prove that xyz = 1 .

If 2log(x-z)-log(x-2y+z)=log(x+z), then x,y and z are in

If log x:log y:log z=(y-z):(z-x):(x-y), then

If log(x+z)+log(x-2y+z)=2log(x-z)," then "x,y,z are in