Home
Class 11
MATHS
[sin A+sin B+sin C],[=4cos A/2cos B/2cos...

[sin A+sin B+sin C],[=4cos A/2cos B/2cos(1)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Theorem 4:sin A+sin B+sin C=4(cos A)/(2)(cos B)/(2)(cos C)/(2)

If A+B+C=(3 pi)/(2), then cos2A+cos2B+cos2C is equal to (A)1-4cos A cos B cos C(B)4sin A sin B sin C(C)1+42cos A cos B cos C(D)1-4sin A sin B sin C

Assertion A:In/_ABC,sum(cos A)/(sin B sin C)=2 Reason R:In/_ABC,sin A+sin B+sin C=4(cos A)/(2)(cos B)/(2)(cos C)/(2)

If A+B+C=180^@ prove that sin A+sin B+sin C=4 "cos" A/2 "cos" B/2 "cos" C/2

If A+B+C=pi/2 prove the following (i) sin 2A+sin 2B +sin 2C=4 cos A cos B cos C (ii) cos 2A +cos 2B+cos 2C=1+4 sin A sin B sin C.

If A+B+C= (pi)/(2) , then show that sin 2A+sin 2B +sin 2C=4 cos A cos B cos C

If A + B + C = (pi)/(2) , prove that sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C

If A+B+C=(3 pi)/(2), then cos2A+cos2B+cos2C is equal to a.1-4cos A cos B cos C b.4sin A sin B sin C c.1+2cos A cos B cos Cd.1-4sin A sin B sin C

If A + B + C= pi , prove that sin 2A + sin 2B -sin 2C =4cos A cos B sin C

sin A + sin B + sin C = 4cos ((A) / (2)) cos ((B) / (2)) cos ((C) / (2))