Home
Class 12
MATHS
The line joining the points 6veca - 4vec...

The line joining the points `6veca - 4vecb - 5vecc, -4vecc` and the line Joining the points `-veca - 2vecb - 3vecc, veca + 2vecb -5vecc` intersect at

Promotional Banner

Similar Questions

Explore conceptually related problems

The line joining the points 6veca-4vecb+4vecc, -4vecc and the line joining the points -veca-2vecb-3vecc, veca+2vecb-5vecc intersect at

The line joining the points 6veca-4vecb+4vecc, -4vecc and the line joining the points -veca-2vecb-3vecc, veca+2vecb-5vecc intersect at

[veca+2vecb-vecc,veca-vecb,veca-vecb-vecc] =

[veca+2vecb-vecc,veca-vecb,veca-vecb-vecc]=

Show that the three points veca-2vecb+3vecc, 2veca+3vecb-4vecc and -7vecb+10vecc are collinear.

If veca, vecb, vecc are non-coplanar vectors, prove that the following vectors are coplanar. (i) 3veca - 7vecb - 4vecc, 3veca - 2vecb + vecc, veca + vecb + 2vecc (ii) 5veca +6vecb + 7vecc, 7veca - 8vecb + 9vecc, 3veca + 20 vecb + 5vecc

If veca, vecb, vecc are non-coplanar vectors, prove that the following vectors are coplanar. (i) 3veca - vecb - 4vecc, 3veca - 2vecb + vecc, veca + vecb + 2vecc (ii) 5veca +6vecb + 7vecc, 7veca - 8vecb + 9vecc, 3veca + 20 vecb + 5vecc

Prove th the following sets of three points are collinear: -2veca+3vecb+5vecc, veca+2vecb+3vecc, 6veca-vecc

Check whether the following sets of three points are collinear: -2veca+3vecb+5vecc, veca+2vecb+3vecc, 6veca-vecc

If |veca|=3, |vecb|=1, |vecc|=4 and veca + vecb + vecc= vec0 , find the value of veca.vecb+ vecb+ vecc.vecc + vecc.veca .