Home
Class 11
MATHS
Let f: RvecR be a function satisfying co...

Let `f: RvecR` be a function satisfying condition `f(x+y^3)=f(x)+[f(y)]^3fora l lx ,y in Rdot` If `f^(prime)(0)geq0,` find `f(10)dot`

Text Solution

Verified by Experts

`"Given "f(x+y^(3))=f(x)+[f(y)]^(3)" (1)"`
`"and "f'(0)ge0" (2)"`
Replacing x, y by 0, we get
`f(0)=f(0)+f(0)^(3)orf(0)=0" (3)"`
`"Also, "f'(0)=underset(hrarr0)lim(f(0+h)-f(0))/(h)=underset(hrarr0)lim(f(h))/(h)" (4)"`
`"Let "I=f'(0)=underset(hrarr0)lim(f(0 +(h^(1//3))^(3))-f(0))/((h^(1//3))^(3))`
`=underset(hrarr0)lim(f((h^(1//3)))^(3))/((h^(1//3))^(3))=underset(hrarr0)lim((f(h^(1//3)))/((h^(1//3))))^(3)=I^(3)`
`"or "I=I^(3)`
`"or "I=0, 1,-as f'(0)ge0`
`therefore" "f'(0)=0,1`
`"Thus "f'(x)=underset(hrarr0)lim(f(x+h)-f(x))/(h)=underset(hrarr0)lim(f(x+(h^(1//3))^(3))-f(x))/((h^(1//3))^(3))`
`=underset(hrarr0)lim(f(x)+(f(h^(1//3)))^(3)-f(x))/((h^(1//3))^(3))" [using (1)]"`
`=underset(hrarr0)lim(f(h^(1//3))/((h^(1//3))))^(3)=(f'(0))^(3)`
`=0,1" [As f'(0)=0, 1 using (5)]"`
Integrating both sides, we get
`f(x)=c or x +c`
`"or "f(x)=0 or x (becausef(0) = 0)`
Thus, f(10) = 0 or 10
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a differentiable function satisfying f(x/y)=f(x)-f(y) for all x ,\ y > 0. If f^(prime)(1)=1 then find f(x)dot

Let f be a differential function satisfying the condition. f((x)/(y))=(f(x))/(f(y))"for all "x,y ( ne 0) in R"and f(y) ne 0 If f'(1)=2 , then f'(x) is equal to

Let f be a function satisfying f(x+y)=f(x) *f(y) for all x,y, in R. If f (1) =3 then sum_(r=1)^(n) f (r) is equal to

Let f:RtoR is a differentiable function satisfying condition f(x+y^(5))=f(x)+(f(y))^(5) forall x,y in R . "If" f'(0)>0 "then the value of" [(f(20))/(2)] "is" (where [ast] denotes greatest integer function)

Let f be a non-zero continuous function satisfying f(x+y)=f(x)f(y) for all , x,y in R . If f(2)=9 then f(3) is

Let f:R-{0}rarr R be a function satisfying f((x)/(y))=(f(x))/(f(y)) for all x,y,f(y)!=0 .If f'(1)=2024 ,then

If f((x+2y)/3)=(f(x)+2f(y))/3\ AA\ x ,\ y in R and f^(prime)(0)=1 , f(0)=2 , then find f(x) .

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is