Home
Class 11
MATHS
If y=f(a^x)a n df^(prime)(sinx)=(log)e x...

If `y=f(a^x)a n df^(prime)(sinx)=(log)_e x ,t h e nfin d(dy)/(dx),` if it exists, where `pi/2

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = e^(log x ) , then ( dy)/(dx)

If y=e^(log_(e)x)," then "(dy)/(dx)=

If y = e^(x+2log x ),then (dy)/(dx)=

If y=log _(e^(x) ) (log x ),then (dy)/(dx)

If y=sinx+e^(x), Then find (dy)/(dx) .

If y= e^(log (log x )) ,then (dy)/(dx) =

If y=e^log x , find dy/dx

If y = log_(a) x then (dy )/(dx) at x =e is

If e^(x-y) =log ((x)/(y)),then (dy)/(dx) =

If y=e^(x+3 log x) , then dy/dx=?