Home
Class 12
MATHS
let alpha=pi/5 and A=[[cosalpha , sinal...

let `alpha=pi/5` and `A=[[cosalpha , sinalpha] , [-sinalpha , cosalpha]]` and `B=A+A^2+A^3+A^4` then: (A) B is singular (B) B is symmetric (C) B is skew symmetric (D) `0 lt |B| lt 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A_(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] , then :

Let A_(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] , then :

If 3cos alpha-4sinalpha=5 , show that, 3sinalpha+4cosalpha=0 .

If A=[[cosalpha,-sinalpha],[sinalpha,cosalpha]] , then A+A^(prime)=I , if the value of alpha is (A) pi/6 (b) pi/3 (c) pi (d) (3pi)/2

If the matrix [(2,3),(5,-1)]=A +B , where A is symmetric and B is skew symmetric, then B=

If A and B are symmetric matrices of the same order then (A) A-B is skew symmetric (B) A+B is symmetric (C) AB-BA is skew symmetric (D) AB+BA is symmetric

If A and B are symmetric matrices of the same order then (A) A-B is skew symmetric (B) A+B is symmetric (C) AB-BA is skew symmetric (D) AB+BA is symmetric

If A and B are symmetric matrices of the same order then (A) A-B is skew symmetric (B) A+B is symmetric (C) AB-BA is skew symmetric (D) AB+BA is symmetric

Let F(alpha)=[(cosalpha, -sinalpha, 0), (sinalpha, cosalpha, 0), (0, 0, 1)] , where alpha in Rdot Then (F(alpha))^(-1) is equal to