Home
Class 12
MATHS
Solve the initial value problem: (dy)/(d...

Solve the initial value problem: `(dy)/(dx)-3ycotx=sin2x ; y=2\ w h e n\ x=\ pi/2` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following initial value problem: (dy)/(dx)+2ytanx=sinx ; y=0\ w h e n\ x=\ pi/3 .

Solve: (dy)/(dx)-3ycot x=sin2x , given y=2 when x= pi/2

Solve each of the following initial value problem: (dy)/(dx)-3y cot x=sin2x;y=2 when x=(pi)/(2)

Solve the initial value problem: (dy)/(dx)=3x^2+6x+5, y(1)=8

Solve the initial value problem: dy/dx=ytan2x , y(0)=2

Solve the initial value problem: x(dy)/(dx)+y=xcosx+sinx ,\ y\ (pi/2)=1

Solve the initial value problem: xdy/dx-y= 5x^2+3x, y(0)=3

Solve the following initial value problem: (dy)/(dx)=y sin2x,y(0)=1

Solve the following initial value problem: (dy)/(dx)=y sin2x,y(0)=1

Solve the initial value problem: x\ (dy)/(dx)-y+xsin(y/x)=0,\ y(2)=pi