Home
Class 12
MATHS
If A=((a(i j)))(nxxn) and f is a functio...

If `A=((a_(i j)))_(nxxn)` and `f` is a function, we define `f(A)=((f(a_(i j))))_(nxxn ')` Let `A=(pi//2-thetatheta-thetapi//2-theta)` . Then `sinA` is invertible b. `sinA=cos A` c. `sinA` is orthogonal d. `sin(2A)=2AsinA cos A`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=(a_(i j))_(nxxn) and f is a function, we define f(A)=((f(a_(i j))))_(nxxn ') Let A=([pi//2-theta,theta],[-theta,pi//2-theta]) . Then

If A=(a_(i j))_(nxxn) and f is a function, we define f(A)=((f(a_(i j))))_(nxxn ') Let A=([pi//2-theta,theta],[-theta,pi//2-theta]) . Then

If A=(a_(i j))_(nxxn) and f is a function, we define f(A)=((f(a_(i j))))_(nxxn ') Let A=([pi//2-theta,theta],[-theta,pi//2-theta]) . Then

If A=(a_(i j))_(nxxn) and f is a function, we define f(A)=((f(a_(i j))))_(nxxn ') Let A=([pi//2-theta,theta],[-theta,pi//2-theta]) . Then

If A=((a_(i j)))_(nxxn) and f is a function, we define f(A)=((f(a_(i j))))_(nxxn ') Let A=[(pi//2-theta , theta),(-theta , pi//2-theta)] . Then a. sinA is invertible b. sinA=cos A c. sinA is orthogonal d. sin(2A)=2AsinA cos A

If A= [a_(ij)] _(nxxn) and f is a function, we define f (A) = [f(a_(ij))] _(nxxn)."Let"A = [[pi/2-theta,theta],[-theta,pi/2-theta]] then

Prove that sinB/sinA=sin(2A+B)/sinA-2cos(A+B)

Prove that ((cos^3A-sin^3A)/(cosA - sinA))- ((cos^3A + sin^3A)/(cosA + sinA))= 2sin A cos A