Home
Class 11
MATHS
If x=t^2,y=t^3,t h e n(d^2y)/(dx^2)= ...

If `x=t^2,y=t^3,t h e n(d^2y)/(dx^2)=` (a)`3/2` (b) `3/((4t))` (c) `3/(2(t))` (d) `(3t)/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=tlogt,y=t^(t)," then "(d^2y)/(dx^(2))=

If x=t^(2) and y=t^(3), find (d^(2)y)/(dx^(2))

If x=t^(2),quad y=t^(3), then (d^(2)y)/(dx^(2))=3/2(b)3/4t(c)3/2t(d)3t/2

If x=t^(2) and y=t^(3)+1 , then (d^(2)y)/(dx^(2)) is

If x=at^(2),y=2at, then (d^(2)y)/(dx^(2))=-(1)/(t^(2))(b)(1)/(2at^(3))(c)-(1)/(t^(3))(d)-(1)/(2at^(3))

If x=t^(2),y=t^(3) what is (d^(2)y)/(dx^(2)) equal to ?

If x=t^(3)+t+5 and y=sin t then (d^(2)y)/(dx^(2))

If x=at^(2),y=2at, then (d^(2)y)/(dx^(2)) is equal to ( a )-(1)/(t^(2))( b) (1)/(2at^(2))(c)-(1)/(t^(3)) (d) (1)/(2at^(3))

If x = t^(2) and y = t^(3) , then (d^(2)y)/(dx^(2)) is equal to