Home
Class 11
MATHS
The last digit of (1!+2!++2005 !)^(500) ...

The last digit of `(1!+2!++2005 !)^(500)` is (A) 9 (B) 2 (C) 7 (D) 1

Promotional Banner

Similar Questions

Explore conceptually related problems

The last digit of the number is 0 (b) 1 (c) 2 (d) 3

The units digit of 13^(2003) is (a) 1 (b) 3 (c) 7 (d) 9

The largest digit in the number is 5 (b) 7 (c) 8 (d) 9

The digit at units place in (2^9) ^100 is (A) 2 (B) 4 (C) 6 (D) 8

Which is the last digit of 1+2+3+……+ n if the last digit of 1 ^(3) + 2 ^(3) + ….. + n ^(3) is 1 ?

The last digit in the decimal representation of ((1)/(5))^(2000) is (a) 2 (b) 4 (c) 5 (d) 6

The last digit in the decimal representation of ((1)/(5))^(2000) is (a) 2 (b) 4 (c) 5 (d) 6

If A=[(2,3),(5,-2)] then 9A^-1 is equal to (A) A\' (B) 2A (C) 1/2 A (D) A

What could be the possible unit place digit of the square root of 121 (A) 1,9 (B) 3,4 (C) 6,7 (D) 7,8