Home
Class 11
MATHS
If x=logp and y=1/p ,then (a)(d^2y)/(...

If `x=logp` and `y=1/p` ,then (a)`(d^2y)/(dx^2)-2p=0` (b) `(d^2y)/(dx^2)+y=0` (c)`(d^2y)/(dx^2)+(dy)/(dx)=0` (d) `(d^2y)/(dx^2)-(dy)/(dx)=0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

x(d^(2)y)/(dx^(2))+(dy)/(dx)+x=0

If p=(dy)/(dx) then (d^(2)y)/(dx^(2))=

if y=x^(x), then prove (d^(2)y)/(dx^(2))-(1)/(y)((dy)/(dx))^(2)-(y)/(x)=0

If y=x^(x), prove that (d^(2)y)/(dx^(2))-(1)/(y)((dy)/(dx))^(2)-(y)/(x)=0

If y=x log((x)/(a+bx)), thenx ^(3)(d^(2)y)/(dx^(2))= (a) x(dy)/(dx)-y (b) (x(dy)/(dx)-y)^(2)y(dy)/(dx)-x(d)(y(dy)/(dx)-x)^(2)

[" The differential equation of the family of curves "],[y=c_(1)x^(3)+(c_(2))/(x)" where "c_(1)" and "c_(2)" are arbitrary "],[" constants,is "],[" O "x^(2)(d^(2)y)/(dx^(2))-x(dy)/(dx)-3y=0],[" (x) "(d^(2)y)/(dx^(2))+x(dy)/(dx)+3y=0],[" (x) "(d^(2)y)/(dx^(2))+x(dy)/(dx)-3y=0],[" (x) "(d^(2)y)/(dx^(2))-x(dy)/(dx)+3y=0]

If y=log(1+sinx)," then "(d^(3)y)/(dx^(3))+(d^(2)y)/(dx^(2))(dy)/(dx)=

Which of the following differential equations has y=c_1e^x+c_2e^(-x) as the general solution? (A) (d^2y)/(dx^2)+y=0 (B) (d^2y)/(dx^2)-y=0 (C) (d^2y)/(dx^2)+1=0 (D) (d^2y)/(dx^2)-1=0

In which of the following differential equation degree is not defined? (a)(d^2y)/(dx^2)+3(dy/dx)^2=xlog((d^2y)/(dx^2)) (b)((d^2y)/(dx^2))^2+(dy/dx)^2=xsin((d^2y)/(dx^2)) (c)x=sin((dy/dx)-2y),|x|<1 (d)x-2y=log(dy/dx)

If y^(2)=P(x), then 2(d)/(dx)(y^(3)(d^(2)(y)/(dx^(2))))