Home
Class 11
MATHS
If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^...

If `y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !),` show that `(dy)/(dx)-y+(x^n)/(n !)=0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=1+x+(x^(2))/(2!)+(x^(3))/(3!)...(x^(n))/(n!)

If x^(m)*y^(n)=(x+y)^(m+n), show that (dy)/(dx)=(y)/(x)

If y=1+x+(x^(2))/(2!)+(x^(3))/(3!)+...+(x^(n))/(n!), then (dy)/(dx) is equal to (a) y(b)y+(x^(n))/(n!)(c)y-(x^(n))/(n!) (d) y-1-(x^(n))/(n!)

If y=A e^(m x)+B e^(n x) , show that (d^2y)/(dx^2)-(m+n)(dy)/(dx)+m n y=0

Solve: (dy)/(dx)+y/x=x^n

If (x-y)^(m+n)=x^m.y^n , show that dy/dx=y/x

if y=(a^(x))/(x^(n)) then (dy)/(dx)

If x^(n) y^(n) =(x+y) ^(n),then (dy)/(dx)=

if x^(m)*y^(n)=1 then (dy)/(dx)

If y=1+(x)/(|_(1))+(x^(2))/(|_(2))+......+(x^(n))/(|_(n))+ then the value of (dy)/(dx)-y=