Home
Class 11
MATHS
f(x)=e^(-1/x),w h e r ex >0, Let for eac...

`f(x)=e^(-1/x),w h e r ex >0,` Let for each positive integer `n ,P_n` be the polynomial such that `(d^nf(x))/(dx^n)=P_n(1/x)e^(-1/x)` for all `x > 0.` Show that `P_(n+1)(x)=x^2[P_n(x)-d/(dx)P_n(x)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

f_(n)(x)=e^(f_(n-1)(x))" for all "n in N and f_(0)(x)=x," then "(d)/(dx){f_(n)(x)} is

Determine a positive integer n<=5 such that int_(0)^(1)e^(x)(x-1)^(n)=16-6e

Let n be a positive integer with f(n)=1!+2!+3!+.........+n! and p(x),Q(x) be polynomial in x such that f(n+2)=P(n)f(n+1)+Q(n)f(n) for all n>= Then

Let P(x) be a polynomial such that p(x)-p'(x)= x^(n) , where n is a positive integer. Then P(0) equals-

If f(x)=(p-x^(n))^((1)/(n)),p>0 and n is a positive integer then f[f(x)] is equal to

If = int_(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I_(n)-nI_(n-1)=

Let f_(1)(x)=e^(x),f_(2)(x)=e^(f_(1)(x)),......,f_(n+1)(x)=e^(f_(n)(x)) for all n>=1. Then for any fixed n,(d)/(dx)f_(n)(x) is

Let f _(1)(x) =e ^(x) and f _(n+1) (x) =e ^(f _(n)(x))) for any n ge 1, n in N. Then for any fixed n, the vlaue of (d)/(dx) f )(n)(x) equals: