Home
Class 10
MATHS
costheta/(cosec theta+1)+costheta/(cosec...

`costheta/(cosec theta+1)+costheta/(cosectheta-1)=2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 0^(@)lethetale90^(@) , then solve the following equations : (i) (costheta)/(1-sintheta)+(costheta)/(1+sintheta)=4 (ii) (cos^(2)theta-3costheta+2)/(sin^(2)theta)=1 (iii) (costheta)/("cosec"theta+1)+(costheta)/("cosec"theta-1)=2

If 0^(@)lethetale90^(@) , then solve the following equations : (i) (costheta)/(1-sintheta)+(costheta)/(1+sintheta)=4 (ii) (cos^(2)theta-3costheta+2)/(sin^(2)theta)=1 (iii) (costheta)/("cosec"theta+1)+(costheta)/("cosec"theta-1)=2

Find the value of (sintheta)/(cosectheta)+(costheta)/(sectheta)-1

Prove that identity (sintheta)/(cosectheta)+costheta/sectheta=1

Prove that identify: (cosec^(2)theta)/(cosectheta-1)-(cosec^(2)theta)/(cosectheta+1)=2sec^(2)theta

(sin^(2)theta)/(costheta(1+costheta))+(1+costheta)/(costheta)=?

sqrt((cosectheta+1)/(cosectheta-1))=costheta/(1-sintheta)=(cottheta)/(cosectheta-1) .

Prove that : (1-costheta)/(1+costheta)=(cottheta-cosectheta)^(2)

Prove that : (1-costheta)/(1+costheta)=(cottheta-cosectheta)^(2)

Prove that following identities (cottheta-costheta)/(cottheta+costheta)=(cosectheta-1)/(cosectheta+1)