Home
Class 10
MATHS
Prove that (sin^Acos^B-cos^2Asin^2B)=(si...

Prove that `(sin^Acos^B-cos^2Asin^2B)=(sin^2A-sin^2B)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: sin^2Acos^2B-cos^2Asin^2B=sin^2A-sin^2B

Prove that : sin^(2)Acos^(2)B-cos^(2)Asin^(2)B=sin^(2)A-sin^(2)B

Prove that : sin^(2)Acos^(2)B-cos^(2)Asin^(2)B=sin^(2)A-sin^(2)B

sin^(2)A cos^(2)B-cos^(2)A sin^(2)B=sin^(2)A-sin^(2)B

Prove that (sin^2A)/(cos^2A)+(cos^2A)/(sin^2A)=1/(sin^2Acos^2A)-2 .

cos(A+B)*cos(A-B)= (a) sin^2A-cos^2B (b) cos^2A-sin^2B (c) sin^2A-sin^2B (d) cos^2A-cos^2B

Prove that sin^2 A cos^2 B+cos^2 A sin^2 B+cos^2 A cos^2 B+sin^2 A sin^2 B=1

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1 then prove that (i)sin^(2)A+sin^(2)B=2sin^(2)A sin^(2)B(ii)(cos^(4)B)/(cos^(2)A)+(sin^(4)B)/(sin^(2)A)=1

Prove that sin(A+B)sin(A-B)=cos^2B-cos^2A

Prove that sin(A+B)sin(A-B)=sin^(2)A-sin^(2)B=cos^(2)B-cos^(2)A