Home
Class 11
MATHS
Differentiate tan^(-1)((sqrt(1+x^2)-1)/x...

Differentiate `tan^(-1)((sqrt(1+x^2)-1)/x)w.r.t tan^(-1)x ,w h e r ex!=0.`

Text Solution

Verified by Experts

Let `u = tan^(-1)'(sqrt(1+x^(2))-1)/(x)` and `v = tan^(-1)x`
`:. x = tan theta`
`rArr u = tan^(-1)'(sqrt(1+tan^(2)theta)-1)/(tan theta)`
` = tan^(-1)'((sectheta - 1)costheta)/(sintheta)`
`=tan^(-1)((1-cos theta)/(sintheta))`
`= tan^(-1) [(1-1+2sin^(2)theta//2)/(2sintheta//2.costheta//2)], [:' cos theta = 1-2sin^(2) theta]`
`= tan^(-1)[tan'(theta)/(2)]`
`= (theta)/(2) = (1)/(2) tan^(-1)x`
`:. (du)/(dx) = 1/2 (d)/(dx) tan^(-1)x = (1)/(2).(1)/(1+x^(2))"..."(i)`
and `(dv)/(dx) = (d)/(dx) tan^(-1)x= (1)/(1+x^(2))"...."(ii)`
` :. (du)/(dv) = (du//dx)/(dv//dx)`
`= (1//2(1+x^(2)))/(1//(1+x^(2))) = ((1+x^(2)))/(2(1+x^(2))) = (1)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)'(sqrt(1+x^(2))-1)/(x) w.r.t. tan^(-1)x , when x ne 0 .

Differentiate sin^(-1)(x/sqrt(1+x^(2))) w.r.t. tan^(-1)x .

Differentiate tan^(-1){(sqrt(1+x^(2))-1)/(x)} w.r.t. x.

Differentiate tan^(-1)((sqrt(1+x^(2))+1)/(x)) w.r.t. x.

Differentiate tan^(-1)((sqrt(1+x^(2)-1))/(x)) with respect to tan^(-1)x,x!=0

Differentiate tan^(-1)((sqrt(1+x^(2))+1)/(x))" w.r.t. "tan^(-1)((2xsqrt(1-x^(2)))/(1-2x^(2))) at x = 0.

Differentiate tan ^(-1) ((8x)/(1-15x^(2))) w.r.to x

Differentiate e^(tan^(-1)sqrtx) w.r.t. x.

Differentiate (e^(x^(2))tan^(-1)x)/(sqrt(1+x^(2))) w.r.t. x.

Differentiate sin^(-1)((2x)/(1+x^(2))) w. r. t. tan^(-1)x, -1 lt x lt 1 .