Home
Class 11
MATHS
If f(x)=cos^(-1)(1/sqrt(13))(2cosx-3sinx...

If `f(x)=cos^(-1)(1/sqrt(13))(2cosx-3sinx)` `+sin^(-1)(1/sqrt(13))(2cosx+3sinx)wdotrdottsqrt(1+x^2),` then find `(df(x))/(dx)` at `x=3/4dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

The derivative of the function f(x)=cos^(-1)((1)/(sqrt(13))(2cos x-3sin x))+sin^(-1)((1)/(sqrt(13))(2cos x+3sin x)), with respect to sqrt(1+x^(2)) at x=(3)/(4) is

The derivative of the function, f(x)=cos^(-1){(1)/(sqrt(13))(2cosx-3sinx)}+sin^(-1){(1)/(sqrt(13))(2cosx+3sinx)}w.r.tsqrt(1+x^(2)) is

The derivative of the function, f(x)=cos^(-1){(1)/(sqrt13)(2cosx-3sinx)}+sin^(-1){(1)/(sqrt13)(2cosx+3sinx)}w.r.t.sqrt(1+x^(2)) at x=(3)/(4) is

cos^(-1)((3cosx-2sinx)/(sqrt(13)))

int(e^(-x/2)sqrt(1-sinx))/(1+cosx)dx

int(1)/(sinx+sqrt3cosx)dx=

If y=cos^(-1)((2cosx-3sinx)/(sqrt(13))) , then (dy)/(dx) , is

int(cosx)/(sqrt(sin^2x-sinx-3))dx=

Ify=cos^(-1)((2x-3sqrt(1-x^(2)))/(13)) then,find (dy)/(dx)