Home
Class 11
MATHS
Prove that sum(r=0)^(2n)(.^(2n)Cr)^2=n^(...

Prove that `sum_(r=0)^(2n)(.^(2n)C_r)^2=n^(4n)C_(2n)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^(n)r(n-r)C_(r)^(2)=n^(2)(^(2n-2)C_(n))

Prove that sum_(n)^(r=0) ""^(n)C_(r)*3^(r)=4^(n).

(18x^(2)+12x+4)^(n)=a_(0)+a_(1x)+a_(2x)^(2)+...+a_(2n)x^(2n) prove that a_(r)=2^(n)3^(r)(^(2n)C_(r)+^(n)C_(1)^(2n-2)C_(r)+^(n)C_(2)^(2n-4)C_(r)+...)

If (18x^(2)+12x+4)^(n)=a_(0)+a_(1x)+a_(2x)^(2)+......+a_(2n)x^(2n), prove that a_(r)=2^(n)3^(r)(^(2n)C_(r)+^(n)C_(1)^(2n-2)C_(r)+^(n)C_(2)2n-4C_(r)+....

Statement -1: sum_(r=0)^(n) r(""^(n)C_(r))^(2) = n (""^(2n -1)C_(n-1)) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))^(2)= ""^(2n)C_(n)

Prove that ^nC_(0)^(2n)C_(n)-^(n)C_(1)^(2n-2)C_(n)+^(n)C_(2)^(2n-4)C_(n)-...=2^(n)

Prove by mathematical induction that sum_(r=0)^(n)r^(n)C_(r)=n.2^(n-1), forall n in N .