Home
Class 11
MATHS
If xsqrt(1+y)+ysqrt(1+x)=0 , for, -1<x<1...

If `xsqrt(1+y)+ysqrt(1+x)=0` , for, `-1

Promotional Banner

Similar Questions

Explore conceptually related problems

If x sqrt(1 + y) + ysqrt(1 + x)= 0 , for -1 lt x lt 1 , prove that (dy)/(dx) = - (-1)/((1 + x)^(2))

If xsqrt(1+y) + ysqrt(1+x) = 0 for x lies between -1 and 1 prove that dy/dx =-1/(1+x)^2

If xsqrt(1 + y) + ysqrt(1 + x) = 0 show that (dy)/(dx) = - 1/(1 + x)^2

If xsqrt(1 + y) + ysqrt(1 + x) = 0 x != y prove that (dy)/(dx) = (-1)/((1 + x)^(2))

If xsqrt(1 + y) + ysqrt(1 + x) = 0 x != y prove that (dy)/(dx) = (-1)/((1 + x)^(2))

"If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).

If xsqrt(1+y)+ysqrt(1+x)=0, prove that (dy)/(dx)=-1/((x+1)^2)

"If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).

If xsqrt(1+y)+ysqrt(1+x)=0, prove that (dy)/(dx)=-1/((x+1)^2)

If xsqrt(1+y)+ysqrt(1+x)=0 , prove that dy/dx=(-1)/((1+x)^2