Home
Class 10
MATHS
cosec()-cot())^(2)=(1-cos())/(1+cos())...

cosec()-cot())^(2)=(1-cos())/(1+cos())

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identities : (cot A - cosec A)^(2) = (1 - cos A)/(1 + cos A)

Prove that (cosec theta-cot theta)^(2)=(1-cos theta)/(1+cos theta)

Prove that : ("cosec "theta -cot theta)^(2)=(1-cos theta)/(1+cos theta)

Prove that : ("cosec "theta-cot theta)^(2)=(1-cos theta)/(1+cos theta) .

Prove that (cosec theta-cot theta)^(2)=(1-cos theta)/(1+cos theta) OR If sin theta+cos theta = sqrt(2) sin (90-theta) determine cot theta

Prove that (tan theta+ sin theta)/(tan theta-sin theta)= (sec theta+1)/(sec theta-1) OR Prove that (cosec theta- cot theta)^(2)=(1-cos theta)/(1+cos theta)

Prove the following identity,where the angles involved are acute angles for which the expressions are defined.(i) (csc theta-cot theta)^(2)=(1-cos theta)/(1+cos theta)

Show that (cosec theta -cot theta )^(2) =(1-cos theta )/( 1+cos theta )

Show that (cosec theta -cot theta )^(2) =(1-cos theta )/( 1+cos theta )