Home
Class 10
MATHS
" 12."|[a-b-c+d],[c+d,a+b]|=a^(2)-b^(2)+...

" 12."|[a-b-c+d],[c+d,a+b]|=a^(2)-b^(2)+c^(2)-d^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If (a)/(b)=(c)/(d) then (a+b)/(a-b)=(c+d)/(c-d),ab=cd ,(a^(2)+b^(2))/(a^(2)-b^(2))=(c^(2)+d^(2))/(c^(2)-d^(2)), ad-dc=0

If (a)/(b) = (c)/(d) , show that : (a + b) : (c + d) = sqrt(a^(2) + b^(2)) : sqrt(c^(2) + d^(2))

If a : b = c : d , then prove that (a + c) : (b + d) = sqrt(a^(2) - c^(2)) : sqrt(b^(2) - d^(2))

If a,b,c,d are in G.P.then (a^(2)-b^(2)),(b^(2)-c^(2)),(c^(2)-d^(2)) are in

If a,b,c,d are in G.P.prove that: (a^(2)+b^(2)),(b^(2)+c^(2)),(c^(2)+d^(2)) are in G.P.(a^(2)-b^(2)),(b^(2)-c^(2)),(c^(2)-d^(2)) are in G.P.(1)/(a^(2)+b^(2)),(1)/(b^(2)+c^(2)),(1)/(c^(2)+d^(2)) are in G.P.(a^(2)+b^(2)+c^(2)),(ab+bc+cd),(b^(2)+c^(2)+d^(2))

If a, b, c and d are in G.P., show that, (b-c)^(2) + (c-a)^(2)+ (d-b)^(2) = (a-d)^(2) .

The positive square root of ((a + b) ^(2) - (c + d) ^(2))/( (a + b) ^(2) - (c - d ) ^(2)) xx ((a + b + c) ^(2) - d ^(2))/( (a + b -c ) ^(2 ) - d ^(2)) using factorisation is:

If A=[[a+i b, c+i d],[-c+i d, a-i b]] and a^2+b^2+c^2+d^2=1,t h e n ,A^(-1) is equal to a. [[a+i b,-c+i d],[c+i d, a-i b]] b. [[a-i b,-c-i d],[-c-i d, a+i b]] c. [[a+i b,-c-i d],[-c+i d, a-i b]] d. none of these

If A=[[a+i b, c+i d],[-c+i d, a-i b]]a n da^2+b^2+c^2+d^2=1,t h e nA^(-1) is equal to a.[[a+i b,-c+i d],[-c+i d, a-i b]] b. [[a-i b,-c-i d],[-c-i d, a+i b]] c. [[a+i b,-c-i d],[-c+i d, a-i b]] d. none of these

If A=[[a+i b, c+i d],[-c+i d, a-i b]] and a^2+b^2+c^2+d^2=1,t h e n ,A^(-1) is equal to a. [[a+i b,-c+i d],[c+i d, a-i b]] b. [[a-i b,-c-i d],[-c-i d, a+i b]] c. [[a+i b,-c-i d],[-c+i d, a-i b]] d. none of these