Home
Class 11
MATHS
Prove that sum(r=0)^n^n Crsinr xcos(n-r)...

Prove that `sum_(r=0)^n^n C_rsinr xcos(n-r)x=2^(n-1)sin(n x)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x+y=1, prove that sum_(r=0)^(n)nC_(r)x^(r)y^(n-r)

Prove that sum_(n)^(r=0) ""^(n)C_(r)*3^(r)=4^(n).

Prove that sum_(r=0)^(2n)(.^(2n)C_(r))^(2)=n^(4n)C_(2n)

Prove that sum_(r=0)^(n)r(n-r)C_(r)^(2)=n^(2)(^(2n-2)C_(n))

Prove that sum_(r=0)^(s)sum_(s=1)^(n)C_(s)^(n)C_(r)=3^(n)-1

If (1+x)^n=sum_(r=0)^n C_rx^r then prove that sum_(r=0)^n (C_r)/((r+1)2^(r+1))=(3^(n+1)-2^(n+1))/((n+1)2^(n+1))

Prove by mathematical induction that sum_(r=0)^(n)r^(n)C_(r)=n.2^(n-1), forall n in N .