Home
Class 11
MATHS
Prove by combinatorial argument that .^(...

Prove by combinatorial argument that `.^(n+1)C_r=^n C_r+^n C_(r-1)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that .^(n)C_(r)+^(n)C_(r-1)=^(n+1)C_(r)

If 1<=r<=n, then n^(n-1)C_(r)=(n-r+1)^(n)C_(r-1)

The combinatorial coefficient C(n, r) is equal to

If .^(n)C_(r-1)=.^(n)C_(3r) , find r.

Let n and r be no negative integers suych that r<=n. Then,^(n)C_(r)+^(n)C_(r-1)=^(n+1)C_(r)

Let n and r be non negative integers such that 1<=r<=n* Then,^(n)C_(r)=(n)/(r)*^(n-1)C_(r-1)

Prove that ^nC_(r)+^(n-1)C_(r)+...+^(r)C_(r)=^(n+1)C_(r+1)

Prove that ""^(n)C_(r ) ""^(r ) C_(s)= ""^(n)C_(s) ""^(n-s)C_(r-s)