Home
Class 12
MATHS
int(1)/(x){log e^(ex)*log e^(e^(2)x)*log...

int(1)/(x){log e^(ex)*log e^(e^(2)x)*log e^(e^(3)x)}dx

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int(log_(ex)e*log_(e^(2)x)e*log_(e^(3)x)e)/(x)dx .

Evaluate: int(log_(ex)e*log_(epsilon^(2)x)e*log_(e^(3)x)e)/(x)dx

If int((log_(ex)e)(log_(e^(2)x)e)log_(e^(3)x) e))1/x dx = Alog |1+logx|+B log |2+log x|+C log |3+ logx| +D then A-B+C is equal to

Evaluate: int(log_(e x)e*log_(e^2x)e*log_(e^3x)e)/x dx

int_((1)/(e))^(e)|log x|dx=

int e^(x log e^(a))dx

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

The value of int(e^(6log x)-e^(5log x))/(e^(4log x)-e^(3log x))dx is equal