Home
Class 12
MATHS
If f(x)=ae^(2x)+be^(x)+c x satisfies the...

If f(x)`=ae^(2x)+be^(x)+c x` satisfies the conditions f(0)=-1, f'(log 2)=31, `int_(0)^(log4) (f(x)-cx)dx=(39)/(2)`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) =ae^(2x)+be^(x)+cx , satisfies the conditions f(0)=-1, f'(log 2)=31, int_(0)^(log4) (f(x)-cx)dx=(39)/(2) , then

If f(x)=ae^(2x)+be^(x)+cx satisfies the condition f(0)=ae^(2x)+be^(x)+cx satisfies the condition f(0)=-1, f'(log2)=31,int_(0)^(log4)(f(x)-cx)dx=(39)/(2) , then

If f(x)=ae^(2x)+be^x+cx satisfies the conditions f(0)=-1, f\'log(2)=28, int_0^(log4) [f(x)-cx]dx=39/2 , then (A) a=5, b=6, c=3 (B) a=5, b=-6, c=0 (C) a=-5, b=6, c=3 (D) none of these

If f(x)=ae^(2x)+be^x+cx satisfies the conditions f(0)=-1, f\'log(2)=28, int_0^(log4) [f(x)-cx]dx=39/2 , then (A) a=5, b=6, c=3 (B) a=5, b=-6, c=0 (C) a=-5, b=6, c=3 (D) none of these

If f(x)=pe^(2x)+qe^(x)+rx satisfies the condition f(0)=-1,f'(In2)=31 and int_(0)^(In4)(f(x)-rx)dx=(39)/(2) ,then the value of (p+q+r) is equal to

Let f(x)=ae^(2x)+be^x+cx , where f(0)=-1, f'(log_e2)=21 and int_0^(log_e4)(f(x)-cx)dx=39/2 then the value of abs(a+b+c) is__________

If f(x)=Ax^(2) +Bx satisfies the conditions f^(1)(1)=8 and int_(0)^(1) f(x)dx=8/3 , then