Home
Class 11
MATHS
If log(x^2+y^2)=2tan^(-1)(y/x), show th...

If `log(x^2+y^2)=2tan^(-1)(y/x),` show that `(dy)/(dx)=(x+y)/(x-y)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If log (x^(2)+y^(2))=tan^(-1)((y)/(x)), then show that (dy)/(dx)=(x+y)/(x-y)

If log sqrt(x^(2)+y^(2))=tan^(-1)((y)/(x)),then(dy)/(dx) is

If log (x^(2)+y^(2)) = 2 tan ^(-1) (x/y) " then show that " (dy)/(dx) = (y-x)/(y +x)

If x^(y)=e^(x-y), show that (dy)/(dx)=(log x)/({log(xe)}^(2))

If y=tan^(-1)x, show that (1+x^(2))(d^(2)y)/(dx^(2))+2x(dy)/(dx)=0

If log y=tan^(-1)x, show that (1+x^(2))y_(2)+(2x-1)y_(1)=0

If x^(y)=e^(x-y), then show that (dy)/(dx)=(log x)/((1+log x)^(2))

If log(x+y)=log(xy)+a,"show that"(dy)/(dx)=-(y^(2))/(x^(2))

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)