Home
Class 12
MATHS
[" (xii) "x+y+z=6],[x+2z=4],[3x+y+z=12]...

[" (xii) "x+y+z=6],[x+2z=4],[3x+y+z=12]

Promotional Banner

Similar Questions

Explore conceptually related problems

x+y+z=6 x + 2z =7, 3x + y + z = 12

2x-y+z=6,x+2y+3z=3,3x+y-z=4

Solve by matrix inversion method the following system of equations. x + y + z = 6, x + 2z = 7, 3x + y + z = 12

2x+y+z=1x-y+2z=-1,3x+2y-z=4

Solve the following system of equations by Cramer's Rule: x+y+z=6,\ \ x+2z=7,\ \ 3x+y+z=12

Prove the identities: |[z, x, y],[ z^2,x^2,y^2],[z^4,x^4,y^4]|=|[x, y, z],[ x^2,y^2,z^2],[x^4,y^4,z^4]|=|[x^2,y^2,z^2],[x^4,y^4,z^4],[x, y, z]| =x y z (x-y)(y-z)(z-x)(x+y+z)

Prove the identities: |[z, x, y],[ z^2,x^2,y^2],[z^4,x^4,y^4]|=|[x, y, z],[ x^2,y^2,z^2],[x^4,y^4,z^4]|=|[x^2,y^2,z^2],[x^4,y^4,z^4],[x, y, z]| =x y z (x-y)(y-z)(z-x)(x+y+z)