Home
Class 12
MATHS
15(n)|[5^(2),5^(3),5^(4)],[5^(3),5^(4),5...

15_(n)|[5^(2),5^(3),5^(4)],[5^(3),5^(4),5^(5)],[5^(4),5^(6),5^(7)]|=0

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the determinant |(5^(2),5^(3),5^(4)),(5^(3),5^(4),5^(5)),(5^(4),5^(6),5^(7))| is -

The value of |[5^2 ,5^3, 5^4], [5^3, 5^4, 5^5], [5^4, 5^5, 5^6]| is (a) 5^2 (b) 0 (c) 5^(13) (d) 5^9

The value of Delta= [[5^2 , 5^3 , 5^4],[ 5^3 , 5^4 , 5^5],[ 5^4 , 5^6 , 5^7 ]] is

|{:(5^2,5^3,5^4),(5^1,5^2,5^3),(5^3,5^4,5^4):}|=.......

|{:(2,3,4),(3,4,5),(4,5,6):}|=0

(6)/(5),(7)/(15),(3)/(20),(4)/(5)

|{:(5,2,3),(7,3,4),(9,4,5):}|=0

(3)/(4)-(5)/(4^(2))+(3)/(4^(3))-(5)/(4^(4))+(3)/(4^(5))-(5)/(4^(6))+.....oo= ?

lim_(n rarr oo)((1^(4))/(1^(5)+n^(5))+(2^(4))/(2^(5)+n^(5))+(3^(4))/(3^(5)+n^(5))+--+(n^(4))/(n^(5)+n^(5)))

(3)/(5)+(4)/(5^(2))+(3)/(5^(3))+(4)/(5^(4))+... to 2n terms