Home
Class 12
MATHS
Domain of f (x) =1/sqrt({x+1}-x^2+2x) wh...

Domain of `f (x) =1/sqrt({x+1}-x^2+2x)` where {·} denotes fractional part of x.

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of f(x)=(1)/(sqrt(-x^(2)+{x})) (where {.} denotes fractional part of x) is

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x.

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x.

The domain of f(x)=sqrt(x-2{x}). (where {} denotes fractional part of x ) is

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x).

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x).

The domain of f(x)=sqrt(2{x}^(2)-3{x}+1) where {.} denotes the fractional part in [-1,1]

The domain of f(x)=sqrt(2{x}^2-3{x}+1), where {.} denotes the fractional part in [-1,1] is (a) [-1,1]-(1/(2),1) (b) [-1,-1/2]uu[(0,1)/2]uu{1} (c) [-1,1/2] (d) [-1/2,1]

The domain of f(x)=sqrt(2{x}^2-3{x}+1), where {.} denotes the fractional part in [-1,1] is [-1,1]-(1/(2,1)) [-1,-1/2]uu[(0,1)/2]uu{1} [-(1,1)/2] (d) [-1/2,1]

The domain of f(x)=sqrt(2{x}^2-3{x}+1), where {.} denotes the fractional part in [-1,1] is (a) [-1,1]-(1/(2),1) (b) [-1,-1/2]uu[(0,(1/2)]uu{1} (c) [-1,1/2] (d) [-1/2,1]