Home
Class 13
MATHS
" If "f(x)=(x)/(1+e^((1)/(x))),x!=0,f(x)...

" If "f(x)=(x)/(1+e^((1)/(x))),x!=0,f(x)=0,x=0" then "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={(x)/(e^((1)/(x))+1),x!=0 and 0,x=0

If f(x)={(x)/(1+e^((1)/(x))) for x!=0,0f or x=0 then the function f(x) is differentiable for

if f(x)=e^(-(1)/(x^(2))),x>0 and f(x)=0,x<=0 then f(x) is

If f(x)=(x)/(1+e^(1//x))"for "x ne 0, f(0)=0" then at x=0, f(x) is"

If f(x) = {(1/(1+e^(1/x)), x ne 0),(0, x= 0):} then f(x) is

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

if f(x)=e^(-(1)/(x^(2))),x!=0 and f(0)=0 then f'(0) is

Test the continuity of the function _(1)f(x)atx=0, where f(x)=(e^((1)/(x)))/(1+e^((1)/(x))), when x!=0=0, where x=0

If f(x)={(e^((1)/(x))/(1+e^((1)/(x)))",", x ne0),(0",",x=0):} , then