Home
Class 11
MATHS
If xsqrt(1+y)+ysqrt(1+x)=0, prove that (...

If `xsqrt(1+y)+ysqrt(1+x)=0,` prove that `(dy)/(dx)=-1/((x+1)^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x sqrt(1+y)+y sqrt(1+x)=0, then prove that (dy)/(dx)=-(1+x)^(-2)

If y=log(sqrt(x)+(1)/(sqrt(x))), prove that (dy)/(dx)=(x-1)/(2x(x+1))

x sqrt(1+y)+y sqrt(1+x)=0 for, for,(dy)/(dx)=-(1)/((1+x)^(2))

xsqrt(1+y)+ysqrt(1+x)=0 , then (dy)/(dx)=

If y=log(sqrt(x)+(1)/(sqrt(x))). Prove that (dy)/(dx)=(x-1)/(2x(x+1))

xsqrt(1+y)+ysqrt(1+x)=0 then (dy)/(dx)=

If y=tan^(-1)(sqrt(1+x^(2))-x) then,prove that (dy)/(dx)=-(1)/(2(x^(2)+1))

If y=sqrt(1+sqrt(1+x^(4))), prove that y(y^(2)-1)(dy)/(dx)=x^(3)

If y=log(x+(1)/(x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=x sin^(-1)x+sqrt(1-x^(2)), prove that (dy)/(dx)=sin^(-1)x