Home
Class 11
MATHS
Using binomial theorem (without using th...

Using binomial theorem (without using the formula for `^n C_r` ) , prove that `"^n C_4+^m C_2-^m C_1^n C_2 = ^m C_4-^(m+n)C_1^m C_3+^(m+n)C_2^m C_2-^(m+n)C_3^m C_1+^(m+n)C_4dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that mC_(1)^(n)C_(m)-^(m)C_(2)^(2n)C_(m)+^(m)C_(3)^(3n)C_(m)-...=(-1)^(m-1)n^(m)

If m in N and m>=2 prove that: |111^(m)C_(1)^(m+1)C_(1)^(m+2)C_(1)^(m)C_(2)^(m+1)C_(2)^(m+2)C_(2)|=1

^(n)C_(m)+^(n-1)C_(m)+^(n-2)C_(m)+............+^(m)C_(m)

The value of ^n C_1+^(n+1)C_2+^(n+2)C_3++^(n+m-1)C_m is equal to (a)^m+n C_(n-1) (b)^m+n C_(n-1) (c)^mC_(1)+^(m+1)C_2+^(m+2)C_3++^(m+n-1) (d)^m+1C_(m-1)

If .^(m)C_(1)=.^(n)C_(2) prove that m=(1)/(2)n(n-1) .

The value of determinant |1 1 1^m C_1^(m+1)C_1^(m+2)C_1^m C_2^(m+1)C_2^(m+2)C_2| is equal to 1 b. -1 c. 0 d. none of these