Home
Class 11
MATHS
If x^y=e^(x-y), Prove that (dy)/(dx)=(lo...

If `x^y=e^(x-y),` Prove that `(dy)/(dx)=(logx)/((1+logx)^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(logx)/((1+logx)^(2))

If ylog x=(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2))

if x^(y)=e^(x-y) then prove that (dy)/(dx)=(log_(e)x)/((1+log_(e)x)^(2))

If x^y= y^x , prove that (dy)/(dx)=((y/x-logy))/((x/y-logx))

y=x^(logx)+(logx)^(x)

x(dy)/(dx)=y(logy-logx+1)

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

Solve x(dy)/(dx)=y(logy-logx+1)

If (x^(x)+y^(x))=1," show that "(dy)/(dx)=-{(x^(x)(1+logx)+y^(x)(logy))/(xy^(x-1))}

If y=e^(1+logx)," then: "(dy)/(dx)