Home
Class 12
MATHS
[" (4) If "y=x^(3)" and "k=((d^(2)y)/(dx...

[" (4) If "y=x^(3)" and "k=((d^(2)y)/(dx^(2)))/([1+((dy)/(dx))^(2)]^((3)/(2)))" ,then find the value of "],[qquad k" at the point "(1,1)" ."]

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x^(3) then the value of ((d^(2)y)/(dx^(2)))/([1+((dy)/(dx))^(2)]^((3)/(2))) at the point (1, 1) is -

If (d^(2)x)/(dy^(2))((dy)/(dx))^(3)+(d^(2)y)/(dx^(2))=K then the value of k is equal to

(y-x(dy)/(dx))=3(1-x^(2)(dy)/(dx))

If x=(1)/(z), y=f(x) and (d^(2)y)/(dx^(2))=kz^(3)(dy)/(dz)+z^(4)(d^(2)y)/(dz^(2)) , then the value of k is -

If (d^2x)/(dy^2)((dy)/(dx))^3+(d^2y)/(dx^2)=K then the value of k is equal to

If (d^(2)x)/(dy^(2)) ((dy)/(dx))^(3) + (d^(2) y)/(dx^(2)) = k , then k is equal to

If (d^(2)x)/(dy^(2)) ((dy)/(dx))^(3) + (d^(2) y)/(dx^(2)) = k , then k is equal to

If (d^(2)x)/(dy^(2)) ((dy)/(dx))^(3) + (d^(2) y)/(dx^(2)) = k , then k is equal to

If (d^(2)x)/(dy^(2)) ((dy)/(dx))^(3) + (d^(2) y)/(dx^(2)) = k , then k is equal to

If y=log(1+sinx)," then "(d^(3)y)/(dx^(3))+(d^(2)y)/(dx^(2))(dy)/(dx)=