Home
Class 11
MATHS
if x=phi(t) and intf(x)dx=F(x) then intf...

if `x=phi(t)` and `intf(x)dx=F(x)` then `intf(phi(t))phi'(t)dt=` (A) `phi(x)` (B) `F(t)` (C) `F(x)` (D) `F^(')(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If phi(x)=f(x)+xf'(x) then int phi(x)dx is equal to

If d/(dx)(phi(x))=f(x) , then

Let phi(x,t)={(x(t-1),xlet),(t(x-1), tltx):} , where t is a continuous function of x in [0,1] . Let g(x)=int_0^1 f(t)phi(x,t)dt , then g\'\'(x) = (A) g(0)=1 (B) g(0)=0 (C) g(1)=1 (D) g\'\'(x)=f(x)

int e^(x){f(x)-f'(x)}dx=phi(x), then int e^(x)f(x)dx is

(d)/(dx)(int_(f(x))^(g(x)) phi(t)dt) is equal to

int (f(x)phi'(x)-phi(x)f'(x))/(f(x)phi(x)) {logphi(x) - logf(x)} dx is

If f(0)=2,f'(x)=f(x),phi(x)=x+f(x)" then "int_(0)^(1)f(x)phi(x)dx is

If f(0)=2, f'(x) =f(x), phi (x) = x+f(x) then int_(0)^(1) f(x) phi (x) dx is