Home
Class 11
MATHS
if intxtan^-1x dx=utan^-1x-x/2+c then u=...

if `intxtan^-1x dx=utan^-1x-x/2+c` then `u=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If intsin^(-1)xdx=x sin^(-1)x+u+c, then u=

if int tan^(-1)sqrt(x)dx=u tan^(-1)sqrt(x)-sqrt(x)+c then u=

intx.tan^(-1)xdx=......+c

Consider intxtan^(-1)xdx=A(x^(2)+1)tan^(-1)x+Bx+C where , C is the constant of integration. What is the value of A ?

Consider intxtan^(-1)xdx=A(x^(2)+1)tan^(-1)x+Bx+C where , C is the constant of integration. What is the value of B ?

If (d)/(dx)[cot^(-1)(x+1)]+(d)/(dx)(tan^(-1)x)=(d)/(dx)(tan^(-1)u)," then "u=

Let U=sin^(-1)((2x)/(1+x^2)) and V=tan^(-1)((2x)/(1-x^2)) , then (d U)/(d V)= (a) 1//2 (b) x (c) (1-x^2)/(1+x^2) (d) 1

Evaluate: (i) intxtan^(-1)x\ dx

If ((x- 1)^(2))/((x^(2) +1)^(2)) dx = tan^(-1) x + g (x) + c then g (x) =