Home
Class 11
MATHS
If x y+y^2=tanx+y ,t h e nfin d(dy)/(dx)...

If `x y+y^2=tanx+y ,t h e nfin d(dy)/(dx)dot`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

y=x^(tanx) then (dy)/(dx) is

Given that y=e^(tanx) , find (dy)/(dx) .

If e^(x) +e^(y) =e^(x+y),then (dy)/(dx)=

If y=e^(x)tanx+x.log_(e)x, then find (dy)/(dx)

If x^(2y)=e^(x-y)," then "(dy)/(dx)=

If e^(y) +xy = e , the ordered pair ((dy)/(dx),(d^(2)y)/(dx^(2))) at x = 0 is equal to

if y=x^2sinx+(3x)/(tanx) , then (dy)/(dx) will be

"If "x^(y)=e^(x-y)" then "(dy)/(dx)=