Home
Class 11
MATHS
If y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+oo)))),...

If `y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+oo)))),t h e np rov et h a t(dy)/(dx)=(y^2-x)/(2y^3-2x y-1)`

Text Solution

Verified by Experts

`y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+))))...oo=sqrt(x+sqrt(y+y))`
`"or "y^(2)=x + sqrt(2y)`
Differentiating w.r.t. x, we get
`"or "2ycdot(dy)/(dx)=1+(1)/(sqrt(2y))xx(dy)/(dx)`
`"or "(dy)/(dx)[2y-(1)/(sqrt(2y))]=1`
`"or "(dy)/(dx)=(sqrt(2y))/(2ysqrt(2y-1))=(y^(2)-x)/(2y^(3)-2xy-1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo))) then ) prove that (dy)/(dx)=(y^(2)-x)/(2y^(3)-2xy-1)

If y=sqrt(sinx+sqrt(sinx+sqrt(sinx+ tooo))),p rov et h a t(dy)/(dx)=(cosx)/(2y-1)

If y=sqrt(x+sqrt(x+sqrt(x+longrightarrow oo))), prove that (dy)/(dx)=(1)/(2y-1)

If y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo)))) , then (dy)/(dx) is equal to

If y=sqrt(x+sqrt(x+sqrt(x+...to oo)),) prove that (dy)/(dx)=(1)/(2y-1)

y=sqrt(sin x+sqrt(sin x+sqrt(sin x+rarr oo))), provethat (dy)/(dx)=(cos x)/(2y-1)

If y=sqrt(log x+sqrt(cos x+sqrt(cos x+...to oo))) prove that (dy)/(dx)=(sin x)/(1-2y)

If y=sqrt(cos x+sqrt(cos x+sqrt(cos x+...oo))) prove that (dy)/(dx)=(sin x)/(1-2y)

y=sqrt(cos x+sqrt(cos x+sqrt(cos x+rarr oo))) prove that (dy)/(dx)=(sin x)/(1-2y)

If y=sqrt(cos x+sqrt(cos x+sqrt(cos x+......oo))) then prove that (dy)/(dx)=(sin x)/(1-2y)