Home
Class 9
MATHS
The midpoint of the sides of a trian...

The midpoint of the sides of a triangle are (2,4) (-2,3) and (5,2) .Find the corrdinate of the vertices of the triangle .

Promotional Banner

Topper's Solved these Questions

  • COORDINATE GEOMETRY

    SURA PUBLICATION|Exercise EXERCISE 5.4|7 Videos
  • COORDINATE GEOMETRY

    SURA PUBLICATION|Exercise EXERCISE 5.5|5 Videos
  • COORDINATE GEOMETRY

    SURA PUBLICATION|Exercise EXERCISE 5.2|13 Videos
  • ALGEBRA

    SURA PUBLICATION|Exercise SECTION-C|10 Videos
  • GEOMETRY

    SURA PUBLICATION|Exercise UNIT TEST (SECTION C)|4 Videos

Similar Questions

Explore conceptually related problems

If the midpoints of the sides of a triangle are (2,1),(-1,-3),a n d(4,5), then find the coordinates of its vertices.

The coordinates of the middle points of the sides of a triangle are (4, 2), (3, 3) and (2,2) then the coordinates of the centroid are

Find the area of the triangle formed by joining the mid-points of the sides of the triangle whose vertices are (0, -1), (2, 1) and (0, 3). Find the ratio of this area to the area of the given triangle.

If the middle points of the sides of a triangle are (-2,3),(4,-3),a n d(4,5) , then find the centroid of the triangle.

If a vertex of a triangle is (1,1) , and the middle points of two sides passing through it are -2,3) and (5,2), then find the centroid and the incenter of the triangle.

The vertices of a triangle are (3,2,5),(3,2,-1) and (7,2,5) . The circumcentre is

If the coordinate of the mid - point of the sides AB, BC and CA of a trinagle are (3,4) (1,1) and (2,-3) respectively , then the vertice A and B of the triangle are .

Consider the triangle whose vertices are (-1,0),(5,-2) and (8,2). Find the centroid of the triangle.

If the centroid of a triangle is at (10,-1) and two vertices are (3,2) and (5,-11). Find the third vertex of a triangle .

Find the area of the triangle vertices are (0, 0), (3, 0) and (0, 2)